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LE'ITER TO THE EDITOR 

Thermodynamics of the strongly correlated Hubbard model 
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Department of Mathematics, University of Melbourne, Parkville, Victofiia 3052, 
Australia 

Received 1 January 1991 

Abstract. High-temperature expansions for the specific heat and susceptibility of the 
strongly correlated Hubbard model are compared with corresponding quantities far spinless 
free fermions and free spins. I t  is found numerically that, when the temperature is high, 
the ratio of the specific heat o f t h e  strongly correlated Hubbard model lo that of spinless 
free fermions approaches a particle-density-depende.nt constant. For fixed temperature, 
the susceptibility of the Hubbard model is less (greater) than that of free spins when the 
panicle density is below (above) a certain threshold density o f  approximately 0.7. The 
ratio of the susceptibilities far the two systems. however, appears to be finite for any value 
of the particle density. Given that the free spin system does not have a ferromagneticstate 
at any finite temperature. it is concluded that the strongly correlated Hubbard model does 
not have a finite phase transition temperature. This conclusion is consistent with our recent 
high-temperature expansion studies. 

The single-band strongly correlated Hubbard model [I] is theoretically important as 
it is one of the simplest non-trivial models of interacting fermions. There is, however, 
no common agreement as to whether the model has a phase transition. Some authors 
believe that below a certain critical hole density, the model has a ferromagnetic or 
anti-ferromagnetic ground state for dimensionality d 7 2 [2-41. On the other hand, 
from high-temperature expansions, it is found that the model does not have a ferromag- 
netic state at any finite temperature on hypercubic lattices [5,6]. Recently, Yedidia 
[7] compared high-temperature expansions of the strongly correlated Hubbard model 
with those of spinless free fermions and free spins on two- and three-dimensional 
lattices. In this paper, we present further comparisons of the strongly correlated 
Hubbard model with spinless free fermions and free spins on both finite- and infinite- 
dimensional lattices. 

The single-band strongly correlated Hubbard model is described by the Hamiltonian 
P I  

where (ij) denotes nearest-neighbour lattice sites, i," = a,-( 1 - nr-") and i:, = 
(1 - nc-v)ay-r .  a:, and a,, are Fermi creation and annihilation operators at site i with 
spin U. The first term in (1) is the kinetic energy with a nearest-neighbour hopping 
energy f and zero otherwise. The second term represents the interaction between the 
electron's spin with an external field h. The factor 1 - n8-- associated with a:,  and a,* 
prevents double occupancy of lattice sites. 
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The spinless free fermion Hamiltonian is given by 
Z'"'=-I 1 (a:a,+a:a,) 

(S )  

where a: and ai are fermion creation and annihilation operators at site i. 
The kinetic energies in (1) and ( 2 )  are similar insofar as double occupancy of a 

site is excluded, with particles otherwise free to move to neighbouring sites. The specific 
heat, which measures temperature variation of the internal energy, should thus be 
similar for the two systems. The difference comes from the existence of spin correlations 
in the Hubbard model. That is, particles hopping along the same lattice trajectories 
in both models have different Boltzmann weights. However, when the particle density 
is low, the probability that two particles meet each other is small and hence correlation 
effects should be small. We found in fact that, when the temperature T is high, the 
ratio of the specific heat for the strongly correlated Hubbard model to that of spinless 
free fermions approaches a constant which depends only on the particle density and 
approaches unity in zero particle density limit. 

The grand canonical partition function for spinless free fermions is 

nj is the total particle number operator. Defining 
Z'O' G -  -Tr e-P%'f''+PN (3) 

z (4) 

where N =  
z = eo+ 

p e -  
l + Z  

we find, after Fourier transformation, that the Gibbs free energy per site is given by 

where 
d 

E X  = - 2 f  COS k; 
ir;, 

The expansion coefficients a:"' for the Gibbs free energy are defined by 
m p 2"-2 

P P ( Z n ) !  m = ~  
(7) 1 1 1 a12"' m g '" '=-h( l -p) - -p( l -p)  1 __ m P '  

After some manipulation, we have 

(8) 
when m<O or m > Z n - 2  

when O s m ~ 2 n - 2  

where Sn,m is given by 

S",, = 1 
m-1 m !  
,=, ( m - / ) ! / !  

S , , = m " -  1 S " , d  when 2 s  m S n (9) 
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In the infinite-dimensional limit, on the other hand, the hopping integral I is 
replaced by fd-"2 and the expansion coefficients for the Gibbs free energy a:"' are 
given in the limit by 

l o  when m < O  or  m > 2 n - 2  
(11) 

S , , , ,  when 0 s  m ~ 2 n  - 2 .  I = 

Using standard thermodynamic relations [9], the particle density pi" and the specific 
heat Cv' for spinless free fermions can be derived from a knowledge of the Gibbs 
free energy. Thus if we write 

and 

where k is the Boltzmann constant, p can be eliminated between (7) and (12) and the 
Gibbs free energy can also be expanded in particle density as 

The expansion coefficients in (14) for the square lattice and infinite-dimensional 
hypercubic lattice are tabulated in  tables 1 and 2 respectively. 

To compare the specific heats for the two systems, we choose units in which f = 1 
and k =  1, and plot the ratios of the specific heats as functions of the temperature for 
different particle densities as shown in figure 1. It is apparent from the figure that, 
when the temperature is high, the ratio approaches a constant which depends only on 
the particle density. 

The magnetic properties of the strongly correlated Hubbard model, on the other 
hazd, are siz-i!ar !a those af free !oca!ized spiz:. The difference again comes fro- 
spin correlations in the Hubbard model which arise from hopping. The total magnetic 
moment, however, is only dependent on the number of up and down spins. In fact, 
the susceptibility of free spins is simply Pp which is the lowest-order term in the 
susceptibility expansion for the Hubbard model. 

The actual values of the susceptibilities for the two systems, however, are close, as 
is seen from figure 2, with the difference diminishing rapidly as the temperature 
increases. Figure 2 also reveals that the difference is smaller for higher orders of 
expansions. This suggests that the ratio of the susceptibilities for the two systems is 
finite for any particle density p. Pad& analysis [IO] of ~ ' ~ ) / , y ' ~ )  as a function of T for 
0.05 < p < 0.95 indicates no sign of a physical singularity in the positive T axis. As the 
free spin system does not have a ferromagnetically ordered phase at any finite tem- 
perature in any dimensions, we conclude that the strongly correlated Hubbard model 
does not have a ferromagnetic phase transition temtemperature in any dimensions. 
This conclusion is consistent with our earlier high-temperature expansion studies [ 5 , 6 ] .  

Following the method by Yedidia, and using the known data for the high- 
temperature expansions of the strongly correlated Hubbard model [5,1 I], we calculated 
the particle densities where the specific heat (magnetic susceptibility) expansion 
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Figure 1. Ratio of the specific heat of the strongly correlated Hubbard model to that of 
spinless free fermions for different panicle densities as a function of the temperature. The 
specific heat is expanded to order of 7' an the square lattice and to order of I" on the 
infinite-dimensional hypercubic lattice. A- l  correspond to panicle densities p = 0.1.0.9. 
( 0 )  Square lattice. ( b )  Infinite-dimensional hypercubic lattice. 

coefficient of r2" for spinless free fermions (free spin system) is equal to that of the 
Hubbard model. The results for 2 S 2 n  S 8 on the square lattice and for 2 5 2n  s 10 on 
infinite-dimensional hypercubic lattice are listed in table 3 and are consistent with the 
above discussions. 

In summary, high-temperature expansions for the strongly correlated Hubbard 
model have been compared numerically with those of spinless free fermions and those 
of the free spin system. When the temperature is high, the ratio of the specific heat of 

Table 3. The particle densities pcv where the coefficients of 7'" of CL"'- Cc"' is equal to 
zero and px where the coe6cients of 7'" of ,y'H'-,y'F' is equal to zero. 

~ ~ 

2 2 any any 
4 0.727 27 0.727 27 
6 0.759 60 0.768 00 
8 0.791 93 0.803 52 

3 2 any any 
4 0.727 27 0.727 27 
6 0.729 45 0.745 66 
8 0.733 92 0.762 81 

m 2 any any 
4 0.727 27 0.727 27 
6 0.703 86 0.728 32 
8 0.678 I8 0.721 27 

10 0.652 90 0.715 14 
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Figure 2. Ratio of the zero-field magnetic susceptibility of the  strongly correlated Hubbard 
model to that of free spin system for different temperatures as a function of the particle 
density. The susceptibilities for the strongly correlated Hubbard model are expanded to 
order of 7' on the square lattice and 10 order of d o o n  the infinite dimensional hypercubic 
lattice. A-I correspond to particle densities p=0.1-0.9. (a) and (b) correspond to J -  1.5 
and J = 3  on square lattice. ( c )  and (d) correspond to J =  1.5 and J = 3  on the infinite- 
dimensional hypercubic lattice. 

the strongly correlated Hubbard model to that of spinless free spins approaches a 
particle-density-dependent constant. On the other hand, the ratio of the susceptibility 
of the strongly correlated Hubbard model to that of free spin system is finite for any 
particle density. From the fact that the free spin system does not have a ferromagnetically 
ordered phase at any finite temperature, we conclude that the strongly correlated 
Hubbard model does not have a finite ferromagnetic phase transition temperature in 
any dimensions. This conclusion is consistent with our earlier high-temperature 
expansion studies. 

The authors acknowledge support from the Australian Research Council. 
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