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LETTER TO THE EDITOR

" Thermodynamics of the strongly correlated Hubbard model
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Department of Mathematics, University of Meibourne, Parkville, Victoria 3052,
Australia

Received 1 January 1991

Abstract. High-temperature expansions for the specific heat and susceptibility of the
strongly correlated Hubbard model are compared with corresponding quantities for spinfess
free fermions and free spins. It is found numerically that, when the temperature is high,
the ratio of the specific heat of the strongly correlated Hubbard model to that of spinless
free fermions approaches a particle-density-dependent constant. For fixed temperature,
the susceptibility of the Hubbard model is less (greater) than that of free spins when the
particle density is below (above) a certain threshold density of approximately 0.7. The
ratio of the susceptibilities for the two systems, however, appears to be finite for any value
of the particle density. Given that the free spin system does not have a ferromagnetic #tate
at any finite temperature, it is concluded that the strongly correlated Hubbard model does
not have a finite phase transition temperature. This conclusion is consistent with our recent
high-temperature expansion studies.

The single-band strongly correlated Hubbard model [1] is theoretically important as
it is one of the simplest non-trivial models of interacting fermions. There is, however,
no common agreement as to whether the model has a phase transition. Some authors
believe that below a certain critical hole density, the model has a ferromagnetic or
anti-ferromagnetic ground state for dimensionality d > 2 [2-4]. On the other hand,
from high-temperature expanstons, it is found that the model does not have a ferromag-
netic state at any finite temperature on hypercubic lattices [5, 6]. Recently, Yedidia
[7] compared high-temperature expansions of the strongly correlated Hubbard model
with those of spinless free fermions and free spins on two- and three-dimensional
lattices. In this paper, we present further comparisons of the strongly correlated
Hubbard model with spinless free fermions and free spins on both finite- and infinite-
dimensional lattices.

The single-band strongly correlated Hubbard model is described by the Hamiltonian

(8]
%{ = —{ Z z (ara ~jCl' ;ﬂam) h Z (an l'l) (1)

n o=1.4 i=1
where (ij) denotes nearest-neighbour lattice sites, &, =a,{l—-n._,} and &, =
(1-n,_,)al_,. al, and a,, are Fermi creation and annihilation operators at site i with
spin ¢. The first term in (1) is the kinetic energy with a nearest-neighbour hopping
energy ! and zero otherwise. The second term represents the interaction between the
electron’s spin with an external field h. The factor 1 —n,_ associated with al, and a,,
prevents double occupancy of lattice sites.
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The spinless free fermion Hamiltonian is given by
#0==13 (ala+aja) @
¢
where a| and a, are fermion creation and annihilation operators at site i,

The kinetic energies in (1} and (2} are similar insofar as double occupancy of a
site is excluded, with particles otherwise free to move to neighbouring sites. The specific
heat, which measures temperature variation of the internal energy, should thus be
similar for the two systems. The difference comes from the existence of spin correlations
in the Hubbard model. That is, particles hopping along the same lattice trajectories
in both models have different Boltzmann weights. However, when the particle density
is low, the probability that two particles meet each other is small and hence correlation
effects should be small. We found in fact that, when the temperature T is high, the
ratio of the specific heat for the strongly correlated Hubbard model to that of spinless
free fermions approaches a constant which depends only on the particle density and
approaches unity in zero particle density limit.

The grand canonical partition function for spinless free fermions is

ZO =Ty e P TEN (3)
where & =X n; is the total particle number operator. Defining

z= eBu

oz (4}

p=l+z
we find, after Fourier transformation, that the Gibbs free energy per site is given by

gV = _er'E InZ& =éln(1 w)—%ﬁ% In{1+p(e P —1)] (5)
where ’

o
g, =-21 ¥ cosk,. (6)

i=1
The expansion coefficients ai>™ for the Gibbs free energy are defined by

20 2n 2p-2

g‘°’=%ln(l—p)—é—p(l—m él ) Z=0 aly"p™. (7

After some manipulation, we have

0 when m<0orm>2n-2
a" = (-1)" (8)
a‘,,fﬂ’.+;—_i_—-1- S, m+1Kzn when 0<m=2n-2
where S, ,, is given by
S.a=1
m—1 m! (9)
S,,=m"—Y ———8, ._ when 2= m=
D Y T mEn
and K,, is given by
23" (2n)!
K., = F (SN FYRY )
2 g = (2R (2R)Y L (2mg) 1 (10
(2m)! )
Lhon=5m"53

22mm !2'
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In the infinite-dimensional limit, on the other hand, the hopping integral r is
(2n)

replaced by td~"/? and the expansion coefficients for the Gibbs free energy a'z”’ are
given in the limit by
0 when m<Q or m>2n-2
(2n) _
an" = 11)
m 1)™ (2n)! (
(ri")r*'( )" @n)! when 0=m=2n-2.

+1 ﬂ' a1

Using standard thermodynamic relations [9], the particle density p'™ and the specific
heat C for spinless free fermions can be derived from a knowledge of the Gibbs
free energy. Thus if we write

o0 In 2n—)
p=p+pll-p) T L DRvp” (12)
2 )r nr=qQ
and
(0) o (2n) ) O] = 5 T 2 oy @)
CV' =kp(1- o pT=kp'[1- c' ™13
p( p)2(2 .z, o[ ]"ZI(Z L CntleTT (3)
where k is the Boltzmann constant, p can be eliminated between (7) and (12) and the
Gibbs free energy can also be expanded in particle density as
(0) ! 1 (1 ) 1 lo)[l (0)] Z 2" ZE2 A(Zn}[ (0)]m (14)
== In(1-p)——p p :
BT S @n) e

The expansion coefficients in (14) for the square lattice and infinite-dimensional
hypercubic lattice are tabulated in tables 1 and 2 respectively.

To compare the specific heats for the two systems, we choose units in which =1
and k=1, and piot the ratios of the specific heats as functions of the temperature for
different particle densities as shown in figure 1. It is apparent from the figure that,
when the temperature is high, the ratio approaches a constant which depends only on
the particle density.

The magnetic properties of the strangly correlated Huybbard model, on the other

hand ara cimilar ta fhncm nf rrﬂ-p lnnal!vﬂr’l cr\lﬂﬂ The Aifferancs asain cnmec fram
TICAIOAL, QLG JIIILIIGL AV Lo ORI ol UIHMVIVUIYG GRGlll WULLLS 1LV

spin correlations in the Hubbard model which arise from hopping. The total magnetic
moment, however, is only dependent on the number of up and down spins. In fact,
the susceptibility of free spins is simply Bp which is the lowest-order term in the
susceptibility expansion for the Hubbard model.

The actual values of the susceptibilities for the two systems, however, are close, as
is seen from figure 2, with the difference diminishing rapidly as the temperature
increases. Figure 2 also reveals that the difference is smaller for higher orders of
expansions. This suggests that the ratio of the susceptibilities for the two systems is
finite for any particle density p. Padé analysis [10] of x'**’/x'"" as a function of T for
0.05 < p<0.95 indicates no sign of a physical singularity in the positive T axis. As the
free spin system does not have a ferromagnetically ordered phase at any finite tem-
perature in any dimensions, we conclude that the strongly correlated Hubbard model
does not have a ferromagnetic phase transition temtemperature in any dimensions.
This conclusion is consistent with our earlier high-temperature expansion studies [5, 6].

Following the method by Yedidia, and using the known data for the high-
temperature expansions of the strongly correlated Hubbard model [ 5, 11], we calculated
the particle densities where the specific heat (magnetic susceptibility) expansion
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Figure 1. Ratio of the specific heat of the strongly correlated Hubbard model 1o that of
spinless free fermions for different particle densities as a function of the temperature. The
specific heat is expanded 1o order of 7° on the square lattice and to order of +'° on the
infinite-dimensional hypercubic lattice. A-1 correspond to particle densities p = 0.1-0.9.
{a) Square lattice. (b) Infinite-dimensional hypercubic lattice.

coefficient of 7% for spinless free fermions (free spin system) is equal to that of the
Hubbard model. The results for 2= 2n = 8§ on the square lattice and for 2=2n <10 on
infinite-dimensional hypercubic lattice are listed in table 3 and are consistent with the
above discussions.

In summary, high-temperature expansions for the strongly correlated Hubbard
model have been compared numerically with those of spinless free fermions and those
of the free spin system. When the temperature is high, the ratio of the specific heat of

Table 3. The particle densities po, where the coefficients of 2 of C#!'— C{" is equal to
zero and p, where the coefficients of " of x'H?— ¥ is equat to zero.

d in Poy ay

2 2 any any
4 0.727 27 0.727 27
6 0.759 60 0.768 00
g 0.79193 0.803 52

3 2 any any
4 0.727 27 0.727 27
6 0.729 45 0.745 66
3 0.73392 0.762 81

[+ ] 2 any any
. 4 0.72727 0.727 27
& 0.703 86 0.728 32
8 0.678 18 G721 27
10 0.65290 0.715 14
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Figure 2. Ratio of the zero-field magnetic susceptibility of the strongly correlated Hubbard
model to that of free spin system for different temperatures as a function of the particle
density. The susceptibilities for the strongly correlated Hubbard model are expanded to
order of 7° on the square lattice and to order of 7!° on the infinite dimensional hypercubic
lattice. A-1 correspond to particle densities p=0.1-0.9. {a) and (b) correspond to T = 1.5
and T =3 on square lattice. {c) and (d) correspond to T =15 and T =3 on the infinite-
dimensional hypercubic lattice.

the strongly correlated Hubbard model to that of spiniess free spins approaches a
particle-density-dependent constant. On the other hand, the ratio of the susceptibility
of the strongly correlated Hubbard model to that of free spin system is finite for any
particle density. From the fact that the free spin system does not have a ferromagnetically
ordered phase at any finite temperature, we conclude that the strongly correlated
Hubbard model does not have a finite ferromagnetic phase transition temperature in
any dimensions. This conclusion is consistent with our earlier high-temperature
expansion studies.
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