Home Search Collections Journals About Contact us My IOPscience

Thermodynamics of the strongly correlated Hubbard model

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1991 J. Phys. A: Math. Gen. 24 L279 (http://iopscience.iop.org/0305-4470/24/6/006)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 01/06/2010 at 14:10

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Thermodynamics of the strongly correlated Hubbard model

Y S Yang and C J Thompson

Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia

Received 1 January 1991

Abstract. High-temperature expansions for the specific heat and susceptibility of the strongly correlated Hubbard model are compared with corresponding quantities for spinless free fermions and free spins. It is found numerically that, when the temperature is high, the ratio of the specific heat of the strongly correlated Hubbard model to that of spinless free fermions approaches a particle-density-dependent constant. For fixed temperature, the susceptibility of the Hubbard model is less (greater) than that of free spins when the particle density is below (above) a certain threshold density of approximately 0.7. The ratio of the susceptibilities for the two systems, however, appears to be finite for any value of the particle density. Given that the free spin system does not have a ferromagnetic state at any finite temperature, it is concluded that the strongly correlated Hubbard model does not have a finite phase transition temperature. This conclusion is consistent with our recent high-temperature expansion studies.

The single-band strongly correlated Hubbard model [1] is theoretically important as it is one of the simplest non-trivial models of interacting fermions. There is, however, no common agreement as to whether the model has a phase transition. Some authors believe that below a certain critical hole density, the model has a ferromagnetic or anti-ferromagnetic ground state for dimensionality d > 2 [2-4]. On the other hand, from high-temperature expansions, it is found that the model does not have a ferromagnetic state at any finite temperature on hypercubic lattices [5, 6]. Recently, Yedidia [7] compared high-temperature expansions of the strongly correlated Hubbard model with those of spinless free fermions and free spins on two- and three-dimensional lattices. In this paper, we present further comparisons of the strongly correlated Hubbard model with spinless free fermions and free spins on both finite- and infinitedimensional lattices.

The single-band strongly correlated Hubbard model is described by the Hamiltonian [8]

$$\mathscr{H}^{(H)} = -t \sum_{\langle ij \rangle} \sum_{\sigma=\uparrow,\downarrow} \left(\hat{a}^{\dagger}_{i\sigma} \tilde{a}_{j\sigma} + \tilde{a}^{\dagger}_{j\sigma} \tilde{a}_{i\sigma} \right) - h \sum_{i=1}^{N} \left(n_{i\uparrow} - n_{i\downarrow} \right)$$
(1)

where $\langle ij \rangle$ denotes nearest-neighbour lattice sites, $\tilde{a}_{i\sigma} = a_{i\sigma}(1 - n_{i-\sigma})$ and $\tilde{a}_{i\sigma}^{\dagger} = (1 - n_{i-\sigma})a_{i-\sigma}^{\dagger}$. $a_{i\sigma}^{\dagger}$ and $a_{i\sigma}$ are Fermi creation and annihilation operators at site *i* with spin σ . The first term in (1) is the kinetic energy with a nearest-neighbour hopping energy *t* and zero otherwise. The second term represents the interaction between the electron's spin with an external field *h*. The factor $1 - n_{i-\sigma}$ associated with $a_{i\sigma}^{\dagger}$ and $a_{i\sigma}$ prevents double occupancy of lattice sites.

0305-4470/91/060279+08\$03.50 © 1991 IOP Publishing Ltd

The spinless free fermion Hamiltonian is given by

$$\mathscr{H}^{(0)} = -t \sum_{\langle ij \rangle} \left(a_i^{\dagger} a_j + a_j^{\dagger} a_i \right)$$
⁽²⁾

where a_i^{\dagger} and a_i are fermion creation and annihilation operators at site *i*.

The kinetic energies in (1) and (2) are similar insofar as double occupancy of a site is excluded, with particles otherwise free to move to neighbouring sites. The specific heat, which measures temperature variation of the internal energy, should thus be similar for the two systems. The difference comes from the existence of spin correlations in the Hubbard model. That is, particles hopping along the same lattice trajectories in both models have different Boltzmann weights. However, when the particle density is low, the probability that two particles meet each other is small and hence correlation effects should be small. We found in fact that, when the temperature T is high, the ratio of the specific heat for the strongly correlated Hubbard model to that of spinless free fermions approaches a constant which depends only on the particle density and approaches unity in zero particle density limit.

The grand canonical partition function for spinless free fermions is

$$Z_G^{(0)} = \operatorname{Tr} e^{-\beta \mathscr{H}^{(0)} + \beta \mathcal{N}}$$
(3)

where $\mathcal{N} = \Sigma n_i$ is the total particle number operator. Defining

$$z = e^{\beta \mu}$$

$$p = \frac{z}{1+z}$$
(4)

we find, after Fourier transformation, that the Gibbs free energy per site is given by

$$g^{(0)} = -\frac{1}{N\beta} \ln Z_G^{(0)} = \frac{1}{\beta} \ln(1-p) - \frac{1}{N\beta} \sum_{k} \ln[1+p(e^{-\beta \varepsilon_k}-1)]$$
(5)

where

$$\varepsilon_k = -2t \sum_{i=1}^d \cos k_i. \tag{6}$$

The expansion coefficients $a_m^{(2n)}$ for the Gibbs free energy are defined by

$$g^{(0)} = \frac{1}{\beta} \ln(1-p) - \frac{1}{\beta} p(1-p) \sum_{n=1}^{\infty} \frac{\tau^{2n}}{(2n)!} \sum_{m=0}^{2n-2} a_m^{(2n)} p^m.$$
(7)

After some manipulation, we have

$$a_{m}^{(2n)} = \begin{cases} 0 & \text{when } m < 0 \text{ or } m > 2n - 2 \\ a_{m-1}^{(2n)} + \frac{(-1)^{m}}{m+1} S_{n,m+1} K_{2n} & \text{when } 0 \le m \le 2n - 2 \end{cases}$$
(8)

where $S_{n,m}$ is given by

$$S_{n,1} = 1$$

$$S_{n,m} = m^n - \sum_{l=1}^{m-1} \frac{m!}{(m-l)! \, l!} S_{n,m-l} \qquad \text{when } 2 \le m \le n$$
(9)

and K_{2n} is given by

$$K_{2n} = \sum_{n_1+n_2+\ldots+n_d=n} \frac{2^{2n}(2n)!}{(2n_1)!(2n_2)!\ldots(2n_d)!} I_{2n_1}I_{2n_2}\ldots I_{2n_d}$$

$$I_{2m} = \frac{(2m)!}{2^{2m}m!^2}.$$
(10)

In the infinite-dimensional limit, on the other hand, the hopping integral t is replaced by $td^{-1/2}$ and the expansion coefficients for the Gibbs free energy $a_m^{(2n)}$ are given in the limit by

$$a_{m}^{(2n)} = \begin{cases} 0 & \text{when } m < 0 \text{ or } m > 2n-2 \\ a_{m-1}^{(2n)} + \frac{(-1)^{m}}{m+1} \frac{(2n)!}{n!} S_{n,m+1} & \text{when } 0 \le m \le 2n-2. \end{cases}$$
(11)

Using standard thermodynamic relations [9], the particle density $\rho^{(0)}$ and the specific heat $C_V^{(0)}$ for spinless free fermions can be derived from a knowledge of the Gibbs free energy. Thus if we write

$$\rho^{(0)} = p + p(1-p) \sum_{n=1}^{\infty} \frac{\tau^{2n}}{(2n)!} \sum_{m=0}^{2n-1} D_m^{(2n)} p^m$$
(12)

and

$$C_{V}^{(0)} = kp(1-p) \sum_{n=1}^{\infty} \frac{\tau^{2n}}{(2n)!} \sum_{m=0}^{2n-2} c_{m}^{(2n)} p^{m} = k\rho^{(0)} [1-\rho^{(0)}] \sum_{n=1}^{\infty} \frac{\tau^{2n}}{(2n)!} \sum_{m=0}^{2n-2} C_{m}^{(2n)} [\rho^{(0)}]^{m}$$
(13)

where k is the Boltzmann constant, p can be eliminated between (7) and (12) and the Gibbs free energy can also be expanded in particle density as

$$g^{(0)} = \frac{1}{\beta} \ln(1-p) - \frac{1}{\beta} \rho^{(0)} [1-\rho^{(0)}] \sum_{n=1}^{\infty} \frac{\tau^{2n}}{(2n)!} \sum_{m=0}^{2n-2} A_m^{(2n)} [\rho^{(0)}]^m.$$
(14)

The expansion coefficients in (14) for the square lattice and infinite-dimensional hypercubic lattice are tabulated in tables 1 and 2 respectively.

To compare the specific heats for the two systems, we choose units in which t=1 and k=1, and plot the ratios of the specific heats as functions of the temperature for different particle densities as shown in figure 1. It is apparent from the figure that, when the temperature is high, the ratio approaches a constant which depends only on the particle density.

The magnetic properties of the strongly correlated Hubbard model, on the other hand, are similar to those of free localized spins. The difference again comes from spin correlations in the Hubbard model which arise from hopping. The total magnetic moment, however, is only dependent on the number of up and down spins. In fact, the susceptibility of free spins is simply $\beta \rho$ which is the lowest-order term in the susceptibility expansion for the Hubbard model.

The actual values of the susceptibilities for the two systems, however, are close, as is seen from figure 2, with the difference diminishing rapidly as the temperature increases. Figure 2 also reveals that the difference is smaller for higher orders of expansions. This suggests that the ratio of the susceptibilities for the two systems is finite for any particle density ρ . Padé analysis [10] of $\chi^{(H)}/\chi^{(F)}$ as a function of T for $0.05 \le \rho \le 0.95$ indicates no sign of a physical singularity in the positive T axis. As the free spin system does not have a ferromagnetically ordered phase at any finite temperature in any dimensions, we conclude that the strongly correlated Hubbard model does not have a ferromagnetic phase transition temtemperature in any dimensions. This conclusion is consistent with our earlier high-temperature expansion studies [5, 6].

Following the method by Yedidia, and using the known data for the hightemperature expansions of the strongly correlated Hubbard model [5, 11], we calculated the particle densities where the specific heat (magnetic susceptibility) expansion

L282		Letter to the	Editor		,	, .
	i = 9	-		-230443315200		
	i = 8	23044331520	214186291200	1036994918400	-179988480	5748019200
	i=7	-92177326080	-856745164800	,19768000 -1920360960000	719953920	-22992076800
	i = 6	24696000	206277120 1346028364800	691488000 1881953740800	2116900 0.123918080	-7902720 41673139200
re lattice.	i = 5	-74088000	-618831360	-288000 -938448000 -1043716181760	-6350400 2831915520	23708160 -44547148900
ons on the squa	i = 4	48000 82320000 52969956480	334080 659205120 401898067200	720000 617400000 324060912000	1920 7432320 -263535520	-57600 -15805440 27212371200
mless free fermi	i = 3	-96000 -41160000 -11842225920	-663160 -287024640 -70870464000	-864 -624000 -200037600 -51979294060	-3840 -4280640 1390798080	115200 -7902720 -7003584000
filcients of spi	i = 2	216 60000 8849400 1152597600	1056 371520 42262080 5056223800	1296 216000 28400400 3554953920	-168 8160 924280 -366458400	268 -100800 14002240 -1098619200
xpansion coe	i = 1	-216 -12000 -617400 -32367040	-1056 -37440 -1888320 -76305600	-8 -504 -24800 -1244600 -64901088	168 -6240 157640 23052960	-288 43200 -6099520 1007899200
emperature e	i = 0	4 36 4900 63504	8 48 480 5600 70560	4 36 400 4900 63504	4 -60 1840 -94780 7371504	8 -144 4800 -258720 -258720 20684160
ligh-t	2n	10 4 0 8 0	6 4 9 8 <u>0</u>	10 4 9 8 0	i or or 12	1 4 9 m 0
l'able 1. H		$a_j^{(2n)}$	c _i (2n)	$D_i^{(2n)}$	$A_i^{(2n)}$	C(²ⁿ⁾

	Letter to the Editor							
	i = 9			-109734912000				
	a = 8	10973491200	576150284800	493807104000	-232243200	259183411200		
	i = 7	-43893964800	-2300601139200	-67737600	928972800	-1036733644800		
ypercubic lattice.	i = 6	8467200 70413235200	257402830 3669645772800	237081 600 8961 684 48000	-241920	121927680 1636095283200		
te-dimensional h	i = 5	-25401 600	. 772208640 .2966833331200	-36400 -321753600 -497007705600	725760 1799864800	-365783040		
ions on the infini	i = 4	14400 28224000 252237888800	224640 847042560 1253322201600	216000 211680000 154314720000	0 -967680 -1146700800	115200 392878080 507741696000		
pinless free ferm	i = 3	-28800 -14112000 -5639155200	-449280 -407070720 -262623513600	-288 -187200 ,68584320 -24752044800	0 725760 377395200	- 230400 -176117760 -92142489600		
oefficients of s	$\ddot{i}=2$	72 18000 3034080 543856000	480 269280 79107840 22403606400	432 64800 9737280 1692835200	-24 0 -265440 -43545600	288 129600 27847680 5617382400		
expansion c	i = 1	-72 -3600 -211680 -15422400	-480 -44640 -4273920 -463881600	-4 -168 -7440 -426720 -30905280	24 0 23520 0	-288 -14400 -752640 -43545600		
mperature	i ≡ 0	2 12 120 1680 30240	4 48 720 13440 302400	2 12 120 1680 30240	2 -12 120 -1680 30240	40000		
ligh-te	2 4	1 4 9 8 9	10 % 6 4 2	~ ~ ~ ~ ~ <u>~</u>	10 8 9 7 7	N 4 9 8 0		
able 2. H		$\mathfrak{a}_{\mathbf{i}}^{(2n)}$	c ⁽²ⁿ⁾	$D_i^{(2n)}$	$A_i^{(2n)}$	$C_i^{(2n)}$		

- ..

.

L283

Figure 1. Ratio of the specific heat of the strongly correlated Hubbard model to that of spinless free fermions for different particle densities as a function of the temperature. The specific heat is expanded to order of τ^8 on the square lattice and to order of τ^{10} on the infinite-dimensional hypercubic lattice. A-1 correspond to particle densities $\rho = 0.1-0.9$. (a) Square lattice. (b) Infinite-dimensional hypercubic lattice.

coefficient of τ^{2n} for spinless free fermions (free spin system) is equal to that of the Hubbard model. The results for $2 \le 2n \le 8$ on the square lattice and for $2 \le 2n \le 10$ on infinite-dimensional hypercubic lattice are listed in table 3 and are consistent with the above discussions.

In summary, high-temperature expansions for the strongly correlated Hubbard model have been compared numerically with those of spinless free fermions and those of the free spin system. When the temperature is high, the ratio of the specific heat of

d .	2n	ρ_{C_V}	ρ_{χ}
2	2	any	any
	4	0.727 27	0.727 27
	6	0.759 60	0.768 00
	8	0.791 93	0.803 52
3	2	any	any
	4	0.727 27	0.727 27
	6	0.729 45	0.745 66
	8	0.733 92	0.762 81
œ	2	any	any
	4	0.727 27	0.727 27
	6	0.703 86	0.728 32
	8	0.678 18	0.721 27
	10	0.652 90	0.715 14

Table 3. The particle densities ρ_{C_V} where the coefficients of τ^{2n} of $C_V^{(H)} - C_V^{(0)}$ is equal to zero and ρ_{χ} where the coefficients of τ^{2n} of $\chi^{(H)} - \chi^{(F)}$ is equal to zero.

Figure 2. Ratio of the zero-field magnetic susceptibility of the strongly correlated Hubbard model to that of free spin system for different temperatures as a function of the particle density. The susceptibilities for the strongly correlated Hubbard model are expanded to order of τ^8 on the square lattice and to order of τ^{10} on the infinite dimensional hypercubic lattice. A-l correspond to particle densities $\rho = 0.1$ -0.9. (a) and (b) correspond to T = 1.5 and T = 3 on square lattice. (c) and (d) correspond to T = 1.5 and T = 3 on the infinite-dimensional hypercubic lattice.

the strongly correlated Hubbard model to that of spinless free spins approaches a particle-density-dependent constant. On the other hand, the ratio of the susceptibility of the strongly correlated Hubbard model to that of free spin system is finite for any particle density. From the fact that the free spin system does not have a ferromagnetically ordered phase at any finite temperature, we conclude that the strongly correlated Hubbard model does not have a finite ferromagnetic phase transition temperature in any dimensions. This conclusion is consistent with our earlier high-temperature expansion studies.

The authors acknowledge support from the Australian Research Council.

References

- [1] Hubbard J 1963 Proc. R. Soc. A 276 238; 1964 Proc. R. Soc. A 281 401
- [2] Nolting W and Borgiel W 1989 Phys. Rev. B 39 6962
- [3] Basile A G and Elser V 1990 Phys. Rev. B 41 4842
- [4] Goryachev E G and Kuzmin E V 1990 Phys. Lett. 149A 69
- [5] Thompson C J, Yang Y S, Guttmann A J and Sykes M F J. Phys. A: Math. Gen. 24 1261
- [6] Thompson C J, Yang Y S and Guttmann A J Preprint
- [7] Yedidia J S 1990 Phys. Rev. B 41 9397
- [8] Joynt R 1988 Phys. Rev. B 37 7979
- [9] Thompson C J 1988 Classical Equilibrium Statistical Mechanics (Oxford: Oxford University Press)
- [10] Guttman A J 1989 Phase Transitions and Critical Phenomena vol 13, ed C Domb and J L Lebowitz (New York: Academic) p 1
- [11] Kubo K and Tada M 1983 Prog. Theor. Phys. 69 1345; 1984 Prog. Theor. Phys. 71 479